We use cookies on our website to give you a better browsing experience by remembering your preferences and to analyse site traffic. By clicking “Accept All”, you consent to the use of cookies. To allow only essential cookies select "Accept essential cookies". For information on our cookie policy select "More information". Read our Privacy Notice.
Cookies policy
What are cookies?
Cookies are small text files placed on your browser by websites. They help make websites work, or work more efficiently. They also “remember” some of your preferences, so you don't have to set a preference again every time you switch to a different page on the same website.
If cookies are a concern for you, you may like to regularly clear your cookies on your browser or use a private browser mode. Check your browser settings for these options.
Essential cookies
Here is the list of essential cookies used on the Koha online catalog. Some of these depend on settings chosen by the library team; therefore, all the cookies listed may not apply to this site.
Storage
Name
Value
Expiration
Description
Cookie
CGISESSID
Session ID
Until logout or end of session
Session cookie
Cookie
KohaOpacLanguage
Language code
3 years
Stores the language the user selected, so the online catalog will appear in that same language the next time it is visited.
Cookie
form_serialized
form_serialized_limits
Search terms and limits
End of session or when the advanced search page is accessed again.
jQuery cookie. Stores search terms and limits of the last advanced search. Set when an advanced search is submitted.
Cookie
search_path_code
ads (fewer) or exs (more)
End of session or when the advanced search page is accessed again.
jQuery cookie. Related to serialized_form* cookies. Stores if the advanced search form was used with 'More options' or 'Fewer options'.
Cookie
num_paragraph
Count of search options added
End of session or when the advanced search page is accessed again.
jQuery cookie. Used to store the number of created options when user selects 'More options' in advanced search to increase search boxes.
Cookie
bib_list
List of record IDs (biblionumbers) separated by /
End of session or until the cart is emptied.
Stores cart contents in the online catalog. Set when records are added to the cart for the first time.
Non-essential cookies
The library team may create additional cookies. These are optional and will require your agreement before they are used. If any non-essential cookies are created, they will appear below.
The Role of Nanoparticles in Plant Nutrition under Soil Pollution : Nanoscience in Nutrient Use Efficiency /
The Role of Nanoparticles in Plant Nutrition under Soil Pollution : Nanoscience in Nutrient Use Efficiency / [E-Book]
- 1st ed. 2022.
- XI, 394 p. 37 illus., 33 illus. in color. online resource.
- Sustainable Plant Nutrition in a Changing World, 2662-2408 .
- Sustainable Plant Nutrition in a Changing World, .
Preface -- Global Importance and Cycling of Nanoparticles -- Environmental Emissions of Nanoparticles -- Bio- and Geo-Transformation and Bioavailability of Nanoparticles -- Interaction of Nanoparticles to Soil Pollutants -- Impact of Nanoparticles to Soil Systems -- Too Much or Too Little? A Review of the Connundrum of Nanoparticles -- Application and Use of Nanoelements in Combating Plant Nutrition -- Role of Nanoparticles in Remediation of Contaminated Soils -- Biochemical, Molecular and Ultrastructural Aspects in Phytoremediation of Nanoparticles Subjected to Unfertilized Soil -- Nanomaterials: A New Approach in Biofortification -- Applications and Implications of Nano-Fertilizers in Food Industries -- Nanobiosensors Based on Agri-Biomass -- Nanoparticles Uptake and Translocation in Plants -- Risks and Concerns of Use of Nanoparticles in Agriculture -- Mechanism of Nanoparticles Mediated Alleviating Biotic and Abiotic Stresses in Agricultural Crops -- Role of Nanoparticles in Environment, Human, and Animals Under Contaminated Soil -- Cytotoxic and Genotoxic Aspects of nanoparticles Interactions with Plant Systems -- Nanoparticles and its Effects on Growth, Yield, and Crop Quality Cultivated Under Polluted Soil -- Impact of nanoparticles of Modulations of Genes and Secondary Metabolites in Plants -- Interaction of Nanoparticles with Plant Growth Promoting Rhizobacteria in Polluted Soil -- Interaction of Nanomaterials with Plant Metabolism -- Bibliography -- Index.
NNanotechnology has shown great potential in all spheres of life. With the increasing pressure to meet the food demands of rapidly increasing population, thus, novel innovation and research are required in agriculture. The principles of nanotechnology can be implemented to meet the challenges faced by agricultural demands. Major challenges include the loss of nutrients in the soil and nutrient-deficient plants, which result in a lower crop yield and quality. Subsequently, consumption of such crops leads to malnourishment in humans, especially in underprivileged and rural populations. One convenient approach to tackle nutrient deficiency in plants is via the use of fertilizers; however, this method suffers from lower uptake efficiency in plants. Another approach to combat nutrient deficiency in humans is via the use of supplements and diet modifications; however, these approaches are less affordably viable in economically challenged communities and in rural areas. Therefore, the use of nano-fertilizers to combat this problem holds the greatest potential. Additionally, nanotechnology can be used to meet other challenges in agriculture including enhancing crop yield, protection from insect pests and animals, and by use of nano-pesticides and nano-biosensors to carry out the remediation of polluted soils. The future use of nanomaterials in soil ecosystems will be influenced by their capability to interact with soil constituents and the route of nanoparticles into the environment includes both natural and anthropogenic sources. The last decade has provided increasing research on the impact and use of nanoparticles in plants, animals, microbes, and soils, and yet these studies often lacked data involving the impact of nanoparticles on biotic and abiotic stress factors. This book provides significant recent research on the use of nano-fertilizers, which can have a major impact on components of an ecosystem. This workshould provide a basis to further study these potential key areas in order to achieve sustainable and safe application of nanoparticles in agriculture.