NHS Logo
Image from Google Jackets

Bio-Nano Interface : Applications in Food, Healthcare and Sustainability / [E-Book]

Contributor(s): Publisher: Singapore : Springer Nature Singapore : Imprint: Springer, 2022Edition: 1st ed. 2022Description: IX, 355 p. 1 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789811625169
Subject(s): Online resources:
Contents:
Chapter 1.Impact of isotropic and anisotropic plasmonic metal nanoparticles on healthcare and food-safety management -- Chapter 2. An introduction to different methods of nanoparticles synthesis -- Chapter 3. Classification, Synthesis, and Application of Nanoparticles against Infectious Diseases -- Chapter 4. Nanotechnology in Food Science -- Chapter 5. Facets of Nanotechnology in food processing, packaging and safety: an emerald insight -- Chapter 6. Nanotechnology and its potential application in postharvest technology -- Chapter 7. Nanotechnology mediated detection and control of phytopathogens -- Chapter 8. Nanosystems for Cancer Therapy -- Chapter 9. Phytoplankton mediated nanoparticles for cancer therapy. Chapter 10. Nanotechnology and its potential implications in Ovary Cancer -- Chapter 11. Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics -- Chapter 12. Bio-nano interface and its potential application in Alzheimer's disease -- Chapter 13. Potential of curcumin nanoparticles in tuberculosis management -- Chapter 14. Application of Nanobiosensor in Health care sector -- Chapter 15. Bioactive nanoparticles: A next generation smart nanomaterials for pollution abatement and ecological sustainability -- Chapter 16. Smart nano-materials for bio-imaging applications:An overview -- Chapter 17. Biology of Earthworm in a World of Nano-materials: New Room, Challenges and, Future Perspectives -- Chapter 18. Bioethanol production from agricultural wastes with the aid of nanotechnology -- Chapter 19. Nanotechnology for sustainable bioenergy production.
Summary: This book discusses the unique interactions of nanoparticles with various biomolecules under different environmental conditions. It describes the consequences of these interactions on other biological aspects like flora and fauna of the niche, cell proliferation, etc. The book provides information about the novel and eco-friendly nanoparticle synthesis methods, such as continuous synthesis of nanoparticles using microbial cells. Additionally, the book discusses nanoparticles' potential impact in different areas of biological sciences like food, medicine, agriculture, and the environment. Due to their advanced physicochemical properties, nanoparticles have revolutionized biomedical and pharmaceutical sciences. Inside the biological milieu, nanoparticles interact with different moieties to adopt stable shape, size, and surface functionalities and form nano-biomolecular complexes. The interaction pattern at the interface form complexes determines the fate of interacting biomolecules and nanoparticles inside the biological system. Understanding the interaction pattern at the nano-bio interface is crucial for the safe use of nanoparticles in natural sciences. This book rightly addresses all questions about the interaction and the ensuing structure and function of these nano-biomolecular complexes. This book caters to students and researchers in the area of biotechnology, microbiology, and pharmaceutical sciences.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Class number URL Status Date due Barcode
Electronic book Hillingdon Hospitals Library Services (Hillingdon Hospitals NHS Foundation) Online Link to resource Available

Chapter 1.Impact of isotropic and anisotropic plasmonic metal nanoparticles on healthcare and food-safety management -- Chapter 2. An introduction to different methods of nanoparticles synthesis -- Chapter 3. Classification, Synthesis, and Application of Nanoparticles against Infectious Diseases -- Chapter 4. Nanotechnology in Food Science -- Chapter 5. Facets of Nanotechnology in food processing, packaging and safety: an emerald insight -- Chapter 6. Nanotechnology and its potential application in postharvest technology -- Chapter 7. Nanotechnology mediated detection and control of phytopathogens -- Chapter 8. Nanosystems for Cancer Therapy -- Chapter 9. Phytoplankton mediated nanoparticles for cancer therapy. Chapter 10. Nanotechnology and its potential implications in Ovary Cancer -- Chapter 11. Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics -- Chapter 12. Bio-nano interface and its potential application in Alzheimer's disease -- Chapter 13. Potential of curcumin nanoparticles in tuberculosis management -- Chapter 14. Application of Nanobiosensor in Health care sector -- Chapter 15. Bioactive nanoparticles: A next generation smart nanomaterials for pollution abatement and ecological sustainability -- Chapter 16. Smart nano-materials for bio-imaging applications:An overview -- Chapter 17. Biology of Earthworm in a World of Nano-materials: New Room, Challenges and, Future Perspectives -- Chapter 18. Bioethanol production from agricultural wastes with the aid of nanotechnology -- Chapter 19. Nanotechnology for sustainable bioenergy production.

This book discusses the unique interactions of nanoparticles with various biomolecules under different environmental conditions. It describes the consequences of these interactions on other biological aspects like flora and fauna of the niche, cell proliferation, etc. The book provides information about the novel and eco-friendly nanoparticle synthesis methods, such as continuous synthesis of nanoparticles using microbial cells. Additionally, the book discusses nanoparticles' potential impact in different areas of biological sciences like food, medicine, agriculture, and the environment. Due to their advanced physicochemical properties, nanoparticles have revolutionized biomedical and pharmaceutical sciences. Inside the biological milieu, nanoparticles interact with different moieties to adopt stable shape, size, and surface functionalities and form nano-biomolecular complexes. The interaction pattern at the interface form complexes determines the fate of interacting biomolecules and nanoparticles inside the biological system. Understanding the interaction pattern at the nano-bio interface is crucial for the safe use of nanoparticles in natural sciences. This book rightly addresses all questions about the interaction and the ensuing structure and function of these nano-biomolecular complexes. This book caters to students and researchers in the area of biotechnology, microbiology, and pharmaceutical sciences.

There are no comments on this title.

to post a comment.
London Health Libraries Consortium Privacy notice and Membership terms and conditions