NHS Logo
Image from Google Jackets

Human iPSC-derived Disease Models for Drug Discovery [E-Book]

Contributor(s): Series: Handbook of Experimental Pharmacology ; 281Publisher: Cham : Springer International Publishing : Imprint: Springer, 2023Edition: 1st ed. 2023Description: VIII, 332 p. 100 illus., 30 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783031423499
Subject(s): Online resources:
Contents:
Part 1 General considerations -- Human iPS for clinical applications and cellular products -- 3D-printed iPS disease models -- Part 2 CNS iPSC and organoids -- iPS-derived neurons and brain organoids from patients (brain) -- iPS-derived RGCs (eye) -- iPS-derived glia (brain) -- iPSC to model blood-brain barrier endothelial cells -- Part 3 iPSC-derived nociceptive neurons -- IPSC-based peripheral nerve modeling -- Part 4 Non-neuronal specialized cell types -- iPSC-based drug screening of differentiated cardiomyocyte subtypes -- iPSC-based cardiac disease modeling: from cell to tissue -- iPSC-derived corneal endothelial cell -- iPSC-derived trabecular meshwork (eye) -- iPSC for in vitro disease modeling of diabetes.
Summary: Since their development a decade ago, human induced pluripotent stem cells (iPSC) have revolutionized the study of human disease, given rise to regenerative medicine technologies, and provided exceptional opportunities for pharmacologic research. These cells provide an essentially unlimited supply of cell types that are difficult to obtain from patients, such as neurons or cardiomyocytes, or are difficult to maintain in primary cell culture. iPSC can be obtained from patients afflicted with a particular disease but, in combination with recently developed gene editing techniques, can also be modified to generate disease models. Moreover, the new techniques of 3 Dimensional printing and materials science facilitate the generation of organoids that can mirror organs under disease conditions. These properties make iPSC powerful tools to study how diseases develop and how they may be treated. In addition, iPSC can also be used to treat conditions in which the target cell population has beenlost and such regenerative approaches hold great promise for currently untreatable diseases, including cardiac failure or photoreceptor degenerations.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Class number URL Status Date due Barcode
Electronic book Hillingdon Hospitals Library Services (Hillingdon Hospitals NHS Foundation) Online Link to resource Available

Part 1 General considerations -- Human iPS for clinical applications and cellular products -- 3D-printed iPS disease models -- Part 2 CNS iPSC and organoids -- iPS-derived neurons and brain organoids from patients (brain) -- iPS-derived RGCs (eye) -- iPS-derived glia (brain) -- iPSC to model blood-brain barrier endothelial cells -- Part 3 iPSC-derived nociceptive neurons -- IPSC-based peripheral nerve modeling -- Part 4 Non-neuronal specialized cell types -- iPSC-based drug screening of differentiated cardiomyocyte subtypes -- iPSC-based cardiac disease modeling: from cell to tissue -- iPSC-derived corneal endothelial cell -- iPSC-derived trabecular meshwork (eye) -- iPSC for in vitro disease modeling of diabetes.

Since their development a decade ago, human induced pluripotent stem cells (iPSC) have revolutionized the study of human disease, given rise to regenerative medicine technologies, and provided exceptional opportunities for pharmacologic research. These cells provide an essentially unlimited supply of cell types that are difficult to obtain from patients, such as neurons or cardiomyocytes, or are difficult to maintain in primary cell culture. iPSC can be obtained from patients afflicted with a particular disease but, in combination with recently developed gene editing techniques, can also be modified to generate disease models. Moreover, the new techniques of 3 Dimensional printing and materials science facilitate the generation of organoids that can mirror organs under disease conditions. These properties make iPSC powerful tools to study how diseases develop and how they may be treated. In addition, iPSC can also be used to treat conditions in which the target cell population has beenlost and such regenerative approaches hold great promise for currently untreatable diseases, including cardiac failure or photoreceptor degenerations.

There are no comments on this title.

to post a comment.
London Health Libraries Consortium Privacy notice and Membership terms and conditions